

Introduction to Creating Basic Routes

2 | F l o w e r s

Creating Basic Routes in Node and Express
Routing refers to how an application’s endpoints (URL or path) responds to a client’s

request. For example, when you type in a Uniform Resource Locator or URL, you, the client,

send a request to a server. The server listens for your request, and then serves up your

request by displaying the website, images, and or data to you.

In Node, routes are defined by using methods of the Express app object that correspond to

an HTTP method. Meaning, routes are defined in node using verbs. These verbs indicate the

actions to be performed for a given resource. Commonly used app methods are GET, POST,

PATCH and DELETE.

https://www.restapitutorial.com/lessons/httpmethods.html

3 | F l o w e r s

 In this session, you will learn how to create basic routes. At the end of the course, you will

have a fully functioning web application that runs on your local machine.

Before starting the course, please download a text editor of your choice, preferably Visual

Studio Code. Also, download node.js.

Let’s dive in.

Creating Project File Structure
1. Create an empty project folder inside Visual Studio code called Mini-

Project.

2. From the File Explorer toolbar, press the New File button.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/en/

4 | F l o w e r s

3. Name the newly created file, app.js.

4. Create three directories: Routes, Views and Public.

5. Within each directory, create your files. In Routes, create two files named,

about.js and home.js. In Views, create three files named, 404.html,

about.html, and home.html. And in Public, add all project images. Then

create two folders named, about.css and home.css.

Creating the Main file
1. Navigate to the app.js file and paste the following code.

const path = require ('path');

const express = require('express');

const homeRoutes = require("./routes/home");

const aboutRoutes = require ("./routes/about");

const app = express();

app.use(express.static("public"));

5 | F l o w e r s

app.use('/', homeRoutes);

app.use('/about', aboutRoutes);

app.use((req, res, next) => {

 res.status(404).sendFile(path.join(__dirname, "views", "404.html"));

});

app.listen(3000);

2. Save file.

Code Explanation: App.Js is our main file. It’s where we require core modules that

come with express, link to our home and about routes, serve up our public files,

define URL paths or endpoints, look in the views folder to serve up the 404.html

file, and start the server on localhost:3000 to access the app.

Installing Express
Express is a framework for Node.Js that creates rules for how our folders/code is structured

in our web application. This structure provides consistency in how our server is set up, how

we route URLs to responses, and how we render views for html responses. To be able to

access our app and start the server on localhost:3000,

1. Run the following command in your terminal in the root directory: npm init. The

npm init command creates a configuration file, called package.json for your

application. This command prompts you for several things, such as name and version

of your application. For now, simply hit ENTER to accept the defaults for most of

them, with the following exception: entry point: (index.js). Enter app.js because we

want app.js as our main file, from which to start the server.

Note: By default, npm installs the module to the dependencies list in the

package.json file. If you open the file, you will see express listed as a dependency.

2. Now install Express in the mini-project directory. Run the following command in your

terminal in the root directory: npm install express - - save. Your package.json, or

configuration file, will look like the following.

https://docs.npmjs.com/files/package.json

6 | F l o w e r s

Viewing & Accessing our app
1. In your terminal in the mini-app directory, type node app.js to start the

server. The node app.js command, starts the project and allows you to view

the project in your browser.

2. In your browser, type localhost:3000. Remember, in the app.js file we

instructed the app to listen on port 3000 and then send a response. For

now, the expected response are two endpoints one at localhost:3000

(homeRoutes) and /about (aboutRoutes).

7 | F l o w e r s

Creating Routes
1. Navigate to the Routes folder.

2. In the home.js file, paste the following code:

const path = require('path');

const express = require('express');

const router = express.Router();

router.get('/', (req, res, next) => {

 res.sendFile(path.join(__dirname, ‘../', 'views', 'home.html'));

});

module.exports = router;

Code explanation: Home.js contains the path to the home or landing page, in this

case, it is localhost:3000. Because our code is considered a mini app,

express.router is used instead of app.get (“/”). This method makes our code more

manageable by breaking the code into separate files and linking to the main app.

Router.get is an HTTP verb that allows us to retrieve data when the end point is

accessed. In the code, the res.sendFile method will go down two directories and

look for the views directory and render home.html to the user on the homepage.

Lastly, module.exports = router is used to mount the router module on a path to

the main app.

3. In the about.js, paste the following code:

8 | F l o w e r s

const path = require('path');

const express = require ('express');

const router = express.Router();

router.get('/', (req, res, next) => {

 res.sendFile(path.join(__dirname, '../', 'views', 'about.html'));

});

module.exports = router;

Code explanation: About.js contains the path to the /about page, in this case, it is

localhost:3000/about. Because our code is considered a mini app, express.router

is used instead of app.get (“/”). This method makes our code more manageable

by breaking the code into separate files and linking to the main app. Router.get is

an HTTP verb that allows us to retrieve data when the end point is accessed. In

the code, the res.sendFile method will go down two directories and look for the

views directory and render about.html to the user on the /about page. Lastly,

module.exports = router is used to mount the router module on a path to the

main app.

Why can’t we see anything on the page? We haven’t added our html! If we tried

to run our code, the app crashes. Let’s create our views and then our app will start

taking shape.

Creating Views
1. Navigate to the Views folder.

2. In the home.html file, paste the following code:

<!DOCTYPE html>

<html>

 <head>

 <title>Home</title>

 <link rel="stylesheet" type="text/css" href="css/home.css">

 </head>

 <div class ="header1">Amazon Services</div>

 <body>

9 | F l o w e r s

 <div id="p-flex">

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Fire TV Stick 4k</div>

 <div class="p-price">$49.99</div>

 <div class="p-desc">Combining digital streaming with voice. It's the best

of both glorious worlds.</div>

 <button class="p-add">More Info</button>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Amazon Prime</div>

 <div class="p-price">$60.00+</div>

 <div class="p-desc">Largest online ecommerce store. Rumor has it, the

store has everything in it from a to z.</div>

 <button class="p-add">More Info</button>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Kindle Paperwhite</div>

 <div class="p-price">$129.99</div>

 <div class="p-desc">Ever dropped your phone, table or kindle in the

water? Of course, you have.</div>

 <button class="p-add">More Info</button>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Amazon Web Services</div>

 <div class="p-price">Tier 1: Free</div>

 <div class="p-desc">On-demand cloud computing services. Enough

said.</div>

 <button class="p-add">More Info</button>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Echo Dot</div>

 <div class="p-price">$29.99+</div>

 <div class="p-desc">"Hey Alexa!" We hope you never lose your voice

again.</div>

 <button class="p-add">More Info</button>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Amazon Go</div>

 <div class="p-price">$30.00+</div>

10 | F l o w e r s

 <div class="p-desc">300 people in the store, two cashiers. Frustrating.

 Have no fear Amazon Go is here.</div>

 <button class="p-add">More Info</button>

 </div></div>

 </div>

 </body>

</html>

3. In the about.html file, paste the following code:

<!DOCTYPE html>

<html>

 <head>

 <title>About</title>

 </head>

 <link rel="stylesheet" type="text/css" href="css/about.css">

 <div class ="header1">Amazon Services</div>

 <body>

 <div id="p-flex">

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Fire TV Stick 4k</div>

 <div class="p-price">$49.99</div>

 <div class="p-desc">Fire TV Stick 4K allows you to enjoy a more complete

4K Ultra HD streaming experience. Launch and control all your favorite movies and

TV shows with the next-gen Alexa Voice Remote.</div>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Amazon Prime</div>

 <div class="p-price">$60.00+</div>

 <div class="p-desc">The best online store in the world with approximately

120 million products sold annually. The highest selling product on Amazon.com are

books.</div>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Kindle Paperwhite</div>

 <div class="p-price">$129.99</div>

 <div class="p-desc">Use your sleek e-reader, Kindle Paperwhite, at the

pool, beach or in the bath. Guess what? You no longer have to worry about getting

your "book" wet.</div>

 </div></div>

11 | F l o w e r s

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Amazon Web Services</div>

 <div class="p-price">Tier 1: Free</div>

 <div class="p-desc">Secure cloud services platform, offering compute

power, database storage, content delivery and other functionality to help

businesses scale and grow.</div>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Echo Dot</div>

 <div class="p-price">$49.99+</div>

 <div class="p-desc">Amazon’s Dot is a smart speaker that packs all the

technology and functionality of the original Echo into a much smaller package.

It's Amazon's best-selling smart speaker, primarily due to its low entry

cost.</div>

 </div></div>

 <div class="p-flex"><div class="p-flex-in">

 <div class="p-name">Amazon Go</div>

 <div class="p-price">$30.00+</div>

 <div class="p-desc">Using their smart phones, customers scan the Amazon

Go app when entering the store. Computer vision technology keeps track of what

they pull from the shelves and charges their credit card when they walk out.

 </div>

 </div></div>

 </div>

 </body>

</html>

4. In the 404.html file, paste the following code:

<!DOCTYPE html>

<html lang ="en">

<head>

 <meta charset="UTF-8">

 <meta name ="viewport" content="width=device-width, initial-scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie-edge">

 <title>Page not found</title>

</head>

<body>

 <h1>Oops, page not found!</h1>

12 | F l o w e r s

</body>

</html>

Code explanation: The home.js, about.hmtl, and 404.html files provides structure

for what our app will look like but without any styling. If you run node app.js in

your terminal, the routes will work, and you will see the html and that’s about it.

The 404.html page will render an error message if you decide to go to an

undefined route. For example, going to localhost:3000/happy. Since /happy is not

defined in our main application, you will receive an “oops, page not found!” error

message.

Serving Static Files
All files in the public directory will serve static files, such as JavaScript, CSS, and

images to the user when our routes are loaded.

1. In the home.css file, paste the following code:

 .header1{

 font-size: 55px;

 font-style: italic;

 text-align: center;

 padding: 35px;

 }

 span {

 color: #f46b41;

 }

 /* Flex container */

 #p-flex {

 max-width: 1500px;

 margin: 0 auto;

 display: flex;

 flex-direction: row;

 flex-wrap: wrap;

 }

 /* Product items */

 div.p-flex {

 width: 25%;

 }

 div.p-flex-in {

 box-sizing: border-box;

 margin: 5px;

13 | F l o w e r s

 padding: 20px;

 border: 3px solid #000;

 background: #F0F0F0;

 }

 img.p-img {

 width: 100%;

 height: auto;

 }

 div.p-name {

 font-weight: bold;

 font-size: 1.1em;

 }

 div.p-price {

 color: #f44242;

 }

 div.p-desc {

 color: #888;

 font-size: 0.9em;

 }

 a {

 text-decoration: none;

 }

 a:link{

 color: white;

 }

 a:visited{

 color: black;

 }

 a:hover{

 color: white;

 }

 button.p-add {

 background: #f46b41;

 color: #fff;

 border: none;

 width: 100%;

 padding: 10px;

 margin: 10px 5px 5px 5px;

 font-size: 1.1em;

 font-weight: bold;

 cursor: pointer;

14 | F l o w e r s

 }

 /* Responsive */

 @media only screen and (max-width: 1024px) {

 div.p-flex { width: 33%; }

 }

 @media only screen and (max-width: 600px) {

 div.p-flex { width: 50%; }

 }

 /* [DOES NOT MATTER] */

 html, body {

 padding: 0;

 margin: 0;

 font-family: arial, sans-serif;

 }

2. In the about.css file, paste the following code:

.header1 {

 font-size: 55px;

 font-style: italic;

 text-align: center;

 padding: 35px;

 }

 span {

 color: #f46b41;

 }

 /* Flex container */

 #p-flex {

 max-width: 1500px;

 margin: 0 auto;

 display: flex;

 flex-direction: row;

 flex-wrap: wrap;

 }

 /* Product items */

 div.p-flex {

 width: 25%;

 }

 div.p-flex-in {

 box-sizing: border-box;

 margin: 5px;

 padding: 20px;

15 | F l o w e r s

 border: 5px solid #800020 ;

 background #F0F0F0;

 }

 img.p-img {

 width: 100%;

 height: auto;

 }

 div.p-name {

 font-weight: bold;

 font-size: 1.1em;

 }

 div.p-price {

 color: #f44242;

 }

 div.p-desc {

 color: #888;

 font-size: 0.9em;

 }

 button.p-add {

 background: #f46b41;

 color: #fff;

 border: none;

 width: 100%;

 padding: 10px;

 margin: 10px 5px 5px 5px;

 font-size: 1.1em;

 font-weight: bold;

 cursor: pointer;

 }

 /* Responsive */

 @media only screen and (max-width: 1024px) {

 div.p-flex { width: 33%; }

 }

 @media only screen and (max-width: 600px) {

 div.p-flex { width: 50%; }

 }

 /* [DOES NOT MATTER] */

 html, body {

 padding: 0;

 margin: 0;

 font-family: arial, sans-serif;

 }

16 | F l o w e r s

3. In the terminal, run node app.js.

4. Refresh localhost:3000, you should see the following on the landing page:

5. Go to localhost:3000/about, you should see the following on the about

page:

17 | F l o w e r s

Free Resources
Node.js

NPM

Express

Books/Tutorials
Getting Mean by Simon Holmes

Udemy: NodeJs: The Complete Guide by Maximillian S.

https://nodejs.org/en/docs/
https://docs.npmjs.com/files/package.json
https://expressjs.com/en/guide/routing.html
https://www.amazon.com/Getting-MEAN-Mongo-Express-Angular/dp/1617292036

